
Cuyahoga Module Development Guide

Table of Contents
Introduction..1
Requirements... 1
Setting up the project... 2
The simplest module possible.. 3

The module controller... 3
The display user control.. 4
The cuyahoga_moduletype table...5
Running the first module...6

Display dynamic content with the module...6
The domain..7
The database.. 8
Mapping the class to the database... 8
Module configuration.. 9
Displaying objects... 9

Using the PathInfo parameters to pass variables..10
Custom module settings... 10
Module administration... 10
Make the module searchable..11
Create an RSS feed for the module..11
Language resources..11
Deployment..12

Copy the files to the server..12
Database scripts for the module installer.. 12

Introduction
Cuyahoga is a web site framework that has functionality to manage the site structure, templates and
authorization. All content management is done by separate modules. This allows for easily adding new
functionality without having to change the framework itself.

This document explains all the aspects of building your own modules and should contain enough
information to get things started. For specific questions or remarks, visit the modules forum at
http://www.cuyahoga-project.org/home/forum.aspx?g=topics&f=4.

The important thing: building custom modules for Cuyahoga is fun! It is not difficult to get results fast
and it's a great opportunity to learn about web frameworks and tools like NHibernate or dotLucene.

Requirements
We're assuming that Visual Studio .NET 2003 is used to create the modules. Of course, NAnt users can
also build modules, but the majority of .NET developers use VS.NET and it makes development a little
bit easier. Module developers need to have some experience developing ASP.NET pages and user
controls.

http://www.cuyahoga-project.org/home/forum.aspx?g=topics&f=4

To get things started, you'll need a working version of Cuyahoga. This guide is based on the 0.9
release. It doesn't matter which database platform you choose. Modules that are developed with these
guidelines should be database independent.

The language used in all examples here is C#, but you're not restricted to use it. In fact, any .NET
language can be used to build modules.

Setting up the project
It's recommended to create one VS.NET project (which creates one assembly) for every module. In
frameworks like DotNetNuke or Rainbow these are called 'Private Assemblies'. Don't add any new
modules to the core modules project (StaticHtml, Articles etc) because this will get you in trouble with
upgrading to a new Cuyahoga version.

Choose 'Class Library' as the project type. By default, there is no option to add web components like
.aspx pages or .ascx user controls to a class library. It is possible however to change some VS.NET
templates that allow you to add web components to a class library. See
http://pluralsight.com/wiki/default.aspx/Fritz/AspNetWithoutWebProjects.html for a detailed
explanation.

The initial directory structure for a module should look something like this:

There are no restrictions for a specific directory structure. If the module is going to be very small, you
may as well put everything in one directory.

To enable debugging, it is required that the module files are copied into the Cuyahoga/Web/bin and
Cuyahoga/Web/Modules directory before debugging. This can be accomplished with a post-build
event:

http://pluralsight.com/wiki/default.aspx/Fritz/AspNetWithoutWebProjects.html

The above event copies the resulting assembly and the .aspx and .ascx files to the right directories.

The simplest module possible
It takes only three steps to create a first module:

• Create a class that serves as a module controller, usually called ModuleNameModule.cs.

• Create an .ascx user control that displays module content.

• Add a record to the cuyahoga_moduletype table so that Cuyahoga knows how to create the
module instance.

The module controller
This is the central class of the module. It's not a controller like in a pure MVC sense but merely a class
that contains or delegates functionality that doesn't belong in the .ascx controls or .aspx pages that are
in the module. The module controller is a subclass of Cuyahoga.Core.Domain.ModuleBase and
requires a constructor with one argument of the 'Section' type.
using System;

using Cuyahoga.Core.Domain;

namespace Cuyahoga.Modules.Sample
{

/// <summary>
/// The module controller class.
/// </summary>
public class SampleModule : ModuleBase
{

public SampleModule(Section section) : base(section)

{
//
// TODO: Add constructor logic here
//

}
}

}

In this very first sample there is nothing else to do for this class, so we leave it like above.
Note: to use the Cuyahoga.Core.Domain classes you have to add a reference to the Cuyahoga.Core
project.

The display user control
Cuyahoga 'injects' templates with module user controls to display content. The content in this sample is
the infamous sentence 'Hello world'. Just create a new User Control in the Web directory of the module
and add the line.

The code behind class of the display control has to inherit from
Cuyahoga.Web.UI.BaseModuleControl:
namespace Cuyahoga.Modules.Sample.Web
{

using System;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

using Cuyahoga.Web.UI;

/// <summary>
/// The sample display control.
/// </summary>
public class Sample : BaseModuleControl
{

private void Page_Load(object sender, System.EventArgs e)
{

// Put user code to initialize the page here
}

#region Web Form Designer generated code
override protected void OnInit(EventArgs e)
{

//
// CODEGEN: This call is required by the ASP.NET Web Form Designer.
//
InitializeComponent();
base.OnInit(e);

}

/// <summary>
/// Required method for Designer support - do not modify
/// the contents of this method with the code editor.
/// </summary>
private void InitializeComponent()
{

this.Load += new System.EventHandler(this.Page_Load);
}
#endregion

}
}

Note: to use the Cuyahoga.Web.UI.BaseModuleControl class you have to add a reference to the
Cuyahoga.Web project.

The cuyahoga_moduletype table
All installed modules are registered in the cuyahoga_moduletype table. Enter the following values:

Column Value
moduletypeid auto-generated

name Sample

assemblyname Cuyahoga.Modules.Sample

classname Cuyahoga.Modules.Sample.SampleModule

path Modules/Sample/Sample.ascx

editpath <null>

inserttimestamp auto-generated

updatetimestamp the current date

Running the first module
The module project in VS.NET should contain the following files and references:

Now run Cuyahoga and try to create a Section in the site administration with the newly created module.
If everything is alright, you should see the first module in action:

Display dynamic content with the module
When developing custom modules for Cuyahoga you can choose any data-access strategy you want.
However, Cuyahoga uses NHibernate for persistence and it's very convenient to also use it for the
modules. It takes away the boring work and gives you database independency.

The samples in this chapter are from the Cuyahoga.Modules.Downloads module that is included with
the Cuyahoga sources. This module is very basic. Check the Articles module for a little more advanced
example.

The domain
We'll start with the domain (business logic) first. This example has almost no business logic, so people
might wonder why we need such a class at all. Well, the answer is simple: for consistency reasons
(when having larger modules, the business logic can get more complicated) and because we have a nice
infrastructure that works well with this kind of solution.

The requirements for the Downloads module are simple: users can download files and access to
specific files can sometimes be restricted to one or more specific roles.

This results in only one domain class: File. This class contains the meta data of the physical files and

some methods to perform authorization checks. Note that it's fine to reference Cuyahoga core classes in
the module domain (see the references to Section, User and Role).

The database

Mapping the class to the database
NHibernate needs to know how classes are mapped to database tables and uses a mapping file for this.
Most of the times, there is one mapping file for one class. In this case we have the mapping file
File.hbm.xml:
<?xml version="1.0" encoding="utf-8" ?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.0">

<class name="Cuyahoga.Modules.Downloads.Domain.File, Cuyahoga.Modules.Downloads"
table="cm_file">

<id name="Id" column="fileid" type="Int32" unsaved-value="-1">
<generator class="native">

<param name="sequence">cm_file_fileid_seq</param>
</generator>

</id>

<timestamp name="UpdateTimestamp" column="updatetimestamp" unsaved-value="1/1/0001" />

<property name="FilePath" column="filepath" type="String" length="255" />
<property name="Title" column="title" type="String" length="100" not-null="false" />
<property name="Size" column="filesize" type="Int32" />
<property name="NrOfDownloads" column="nrofdownloads" type="Int32" />
<property name="ContentType" column="contenttype" type="String" length="50" />
<property name="DatePublished" column="datepublished" type="DateTime" />

<many-to-one name="Section" class="Cuyahoga.Core.Domain.Section, Cuyahoga.Core"
column="sectionid" cascade="none" />

<many-to-one name="Publisher" class="Cuyahoga.Core.Domain.User, Cuyahoga.Core"
column="publisherid" cascade="none" />

<bag name="AllowedRoles" cascade="none" lazy="true" table="cm_filerole">
<key column="fileid" />
<many-to-many class="Cuyahoga.Core.Domain.Role, Cuyahoga.Core" column="roleid" />

</bag>

</class>
</hibernate-mapping>

This mapping file resides in the same directory as the File.cs file has to marked as Embedded Resource
in VS.NET.

Module configuration
Before we can go to the user control that displays a list of files there is one important step to be taken:
make sure that Cuyahoga knows about the File class and how to persist it. This is done by registering
the class in the constructor of the module controller (DownloadsModule.cs).
public DownloadsModule(Section section) : base(section)
{

SessionFactory sf = SessionFactory.GetInstance();
// Register classes that are used by the DownloadsModule
sf.RegisterPersistentClass(typeof(Cuyahoga.Modules.Downloads.Domain.File));

base.SessionFactoryRebuilt = sf.Rebuild();

[...other constructor stuff...]
}

SessionFactory in the code above is a singleton wrapper around the NHibernate configuration. There is
one unique instance of this class during the lifetime of the application, so a class only has to be
registered at the first request (SessionFactory handles this internally).
The SessionFactory.RegisterPersistentClass() method integrates the mapping of the module class with
the rest of Cuyahoga's mappings. After adding a class, calling the SessionFactory.Rebuild() method is
required, because Cuyahoga needs to be notified when the configuration has changed during a request.
Disclaimer: this is not the most elegant piece of code. Feel free to investigate the possibilities of
improving this part.

Displaying objects
The Web/Downloads.ascx user control is responsible for displaying the content. It displays a list of files
in a Repeater control. Just like the sample user control before, the code-behind class has to inherit from
Cuyahoga.Web.UI.BaseModuleControl. By inheriting from this class, the code-behind page knows its
module controller (DownloadsModule.cs) and can call methods to retrieve or store the objects. You can
choose to implement the persistence logic in the module controller or, in large modules, delegate it to
some kind of repository object.

An example: to show all files that belong to a specific section, the DownloadsModule.GetAllFiles()
method is called and the resulting list of objects is bound to the Repeater:
/// <summary>
/// Retrieve the meta-information of all files that belong to this module.

/// </summary>
/// <returns></returns>
public IList GetAllFiles()
{

string hql = "from File f where f.Section.Id = :sectionId order by f.DatePublished desc";
IQuery q = base.NHSession.CreateQuery(hql);
q.SetInt32("sectionId", base.Section.Id);
try
{

return q.List();
}
catch (Exception ex)
{

throw new Exception("Unable to get Files for section: " + base.Section.Title, ex);
}

}

The GetAllFiles() method uses an NHibernate IQuery object to retrieve the File objects from the
database. See the NHibernate docs for more details about the query language.

Using the PathInfo parameters to pass variables
A traditional way to pass parameters to a page request is with query strings. With Cuyahoga it is still
possible to use these, but the majority of modules uses PathInfo variables to pass parameters. This
makes urls slightly more search-engine friendly.

Now if the Cuyahoga page engine receives a request like
http://servername/cuyahoga/23/section.aspx/download/45 it loads the page (Node) where the section
with id 23 is located and calls the ParsePathInfo() method of the module controller that belongs to the
section with id 23. This method sets the module controller in a specific state, so that the rest of the
module knows what (not) to do. For example, if a Downloads module instance retrieves the PathInfo
'/download/45' like in the above url, it knows that it has to stream the file with id 45 to the browser.

Custom module settings
If a module has to be configurable per section, you can define configuration parameters in the
cuyahoga_modulesetting table. These parameters automatically show up when editing a section in the
site administration and the values are stored in the Settings collection of a section and later persisted in
the cuyahoga_sectionsetting table. The settings can be used in different ways. Some modules (Articles)
read the settings directly from the section in the display user control, where a module like Downloads
reads the settings once in the constructor of its module controller and exposes the value as strong-typed
properties.

The Article module is an example of a module that has many module settings.

Module administration
Besides displaying content, a module also needs to offer possibilities to manage content. Editing
content is done via separate .aspx pages. The relative link to the entry administration page is stored in
the cuyahoga_moduletype table in the editpath column. For example, the Downloads module has
'Modules/Downloads/EditDownloads.aspx' as its entry edit page. When left blank, Cuyahoga assumes
there is no module administration page.

If an authenticated user is allowed to edit a specific section, an 'edit' link to the module administration
page automatically appears that points to the module administration entry page.

http://servername/cuyahoga/23/section.aspx/download/45

Building module administration pages is almost the same as building ordinary ASP.NET pages. Just
make sure that the code-behind page inherits Cuyahoga.Web.UI.ModuleAdminBasePage. This base
class provides an environment where the related module controller, Section and Node are available.
The ModuleAdminBasePage also provides generic facilities to update the search index when content is
changed.

Make the module searchable
If a module needs its content indexed for full text searching, the module controller has to the implement
ISearchable interface. Take a look at the Articles module (ArticleModule.cs) for an example.

The ISearchable interface has one method GetAllSearchableContent() and three events
ContentCreated, ContentUpdated and ContentDeleted.

The GetAllSearchableContent() method returns all content for a specific module instance (related to a
Section) and is called when the index is completely rebuilt from the administration interface. Because
every module can have a different content structure, we need a unified structure to pass content to the
search indexer because the indexer can't of course guess which content a module wants to have
indexed. This is the Cuyahoga.Core.Search.SearchContent class. GetAllSearchableContent() has to
return an array of SearchContent objects.

If a module controller implements ISearchable, the implemented events from the module controller are
automatically handled by the ModuleAdminBasePage. The events all have the same EventArgs,
IndexEventArgs, that contains a SearchContent object to be passed to the indexer. For example, when a
new article is added in the Articles module, the module controller (ArticleModule.cs) saves an Article
object, creates a SearchContent object from the Article object and raises the ContentCreated event with
the SearchContent object as event data via IndexEventArgs.

Create an RSS feed for the module
To offer an RSS feed for a module, the module controller has to implement the ISyndicatable interface.
Again, the Articles module serves as an example how to accomplish this. The ISyndicatable has just
one method GetRssFeed(). This method returns a Cuyahoga.Core.Util.RssChannel object that contains
everything for a complete RSS feed. The module itself is responsible for creating the RssChannel
object.

At the time of writing (Cuyahoga 0.9), only RSS 2.0 is supported as a format for the feeds.

Language resources
If a module has to support different languages, you can create text strings in language resource files
(the default .NET .resx format) that have to be placed in the Module_Name/Web/Resources directory.
Like any resource file, the build action of these files has to be set to 'Embedded Resource'.

Only the display user controls (non-admin) support this localization. The BaseModuleControl that is
the base class for all display user controls inherits from LocalizedUserControl. This base class provides
a convenient GetText() method that accepts an identifier string and returns the localized string,
depending on the current culture context. See the Downloads module for an example.

Deployment
The deployment of modules is a two step process:

1. Copy the required files to the deployment server

2. Run the database scripts to register the module in the Cuyahoga database and create the
module-related tables.

The last step can be accomplished by just running a single.sql script on your database server that sets
up the database, but in this example we'll set up a files structure so that the database part of the modules
can be installed, upgraded and uninstalled with the module installer. You can reach the module installer
in the Cuyahoga site administration from 'Modules'.

Copy the files to the server
First create a subdirectory on the server in the Modules directory that is in the root of your web
application and give it the same name as your module (column name in the cuyahoga_moduletype
table). This is the place where the .aspx, ascx and other web files like images have to be copied. Of
course we also need to deploy the compiled .dll to the server. This one goes into the /bin directory of
the web application.

For example, when deploying the Downloads module, all files from the Web/ directory except the
resource files are copied to the /Modules/Downloads/ directory on the server (preserving the directory
structure) and the Cuyahoga.Modules.Downloads.dll file is copied to the /bin directory.

Database scripts for the module installer
Besides copying the web files, the database installer scripts also have to be copied to the server.

The module installer wants the database install scripts to be organized in a specific way. The layout is
/Install/Database/Database_Type. For Database_Type you can choose either mssql2000, mysql or
postgresql. Check the spelling, because the installer looks for the exact directory.

Again, we'll take the Downloads module as an example. It has the following installer directory
structure which is copied to the /Modules/Downloads/ directory:

At least a install.sql file is required. The module installer specifically looks for this file. This file
contains the create statements for the module tables, the module definition data and a record for the
cuyahoga_version table (SQL Server example):
/*
 * Module tables structure
 */
CREATE TABLE cm_file(
fileid int identity(1,1) NOT NULL CONSTRAINT PK_file PRIMARY KEY,
sectionid int NOT NULL,
publisherid int NOT NULL,
filepath nvarchar(255) NOT NULL,
title nvarchar(100) NULL,
filesize int NOT NULL,
nrofdownloads int NOT NULL,
contenttype nvarchar(50) NOT NULL,
datepublished datetime NOT NULL,
inserttimestamp datetime DEFAULT current_timestamp NOT NULL,
updatetimestamp datetime NOT NULL)
go

[...more module tables stuff ...]

/*
 * Module definition data
 */
DECLARE @moduletypeid int

INSERT INTO cuyahoga_moduletype (name, assemblyname, classname, path, editpath, inserttimestamp,
updatetimestamp) VALUES ('Downloads', 'Cuyahoga.Modules.Downloads',
'Cuyahoga.Modules.Downloads.DownloadsModule', 'Modules/Downloads/Downloads.ascx',
'Modules/Downloads/EditDownloads.aspx', '2005-05-15 14:36:28.324', '2004-05-15 14:36:28.324')

SELECT @moduletypeid = Scope_Identity()

INSERT INTO cuyahoga_modulesetting (moduletypeid, name, friendlyname, settingdatatype, iscustomtype,
isrequired) VALUES (@moduletypeid, 'SHOW_PUBLISHER', 'Show publisher', 'System.Boolean', 0, 1)

[.. more modulesettings..]
/*
 * Version
 */
INSERT INTO cuyahoga_version (assembly, major, minor, patch) VALUES ('Cuyahoga.Modules.Downloads', 0,
9, 0)

Optionally, you can add an uninstall.sql script that removes the module tables from the database and

removes the module definition data and the version record. The module installer will show the uninstall
option when it finds the uninstall.sql file.

Again optional are the .sql scripts for upgrading. These need to follow the naming convention
major_version.minor_version.patch.sql. The script with the lowest version number has to create every
database object for that particular version (equally to the install.sql for that version). The files with the
higher numbers have scripts that upgrade the database to that version.
Important: To use the upgrade features it is very important that the version record is updated with
every upgrade script and that the assembly version is maintained properly. The module installer reads
the version number in the database for a specific module and then analyzes the current module
assembly version. If there is a difference between those two versions, all upgrade scripts, from the
database version until the current assembly version, are executed.

	Introduction
	Requirements
	Setting up the project
	The simplest module possible
	The module controller
	The display user control
	The cuyahoga_moduletype table
	Running the first module

	Display dynamic content with the module
	The domain
	The database
	Mapping the class to the database
	Module configuration
	Displaying objects

	Using the PathInfo parameters to pass variables
	Custom module settings
	Module administration
	Make the module searchable
	Create an RSS feed for the module
	Language resources
	Deployment
	Copy the files to the server
	Database scripts for the module installer

