
 Implementation of Extensions5
The current version of Cuyahoga (1.5.0) is a mature and well designed web application. But as with
any application, there is room for improvements.

This chapter discusses the issues the author wanted to resolve and the steps he took to extend the
system.

5.1 General Issues:

Modules can use UserControls (.ascx) and Pages (.aspx) to provide an user interface for managing
their content. Certain functionality is only available within special controls or pages (e.g. indexing
for search is only implemented in ModuleAdminBasePage)

Some of the functionality (searching, content syndication, persistence, etc.) relies on very different
components which do not share a common pattern for the different pieces of functionality

The modules have to provide all infrastructure services regarding the management of their content
themselves, there are no basic services provided by the application

The content is isolated from other modules' content, no services are available for connecting,
classifying, defining workflows for content etc. between modules

5.2 Concrete Examples

5.2.1 The Search Functionality
Modules (more precisely: the module controller) can implement
the ISearchable interface which exposes events for notifying the
search infrastructure about changes. Additionally, the interface
defines a method that is called to retrieve all searchable content
(when rebuilding the entire search index).

For edit/admin pages, the framework offers a base class,
ModuleAdminBasePage, that module pages can extend. This base
page offers some methods and events that simplify the access to
core services (e.g. the IndexBuilder).

The ModuleAdminBasePage uses the ModuleLoader to load the
module controller and inspects it if there are any special
interfaces it is interested in (e.g. ISearchable).

The ModuleAdminBasePage registers event listeners for the events ContentCreated,
ContentDeleted and ContentUpdated of the module implementing ISearchable (e.g. ArticleModule)
and forwards content for (re)indexing to the IndexBuilder if one of these three events occurs.

Figure 18 illustrates this concept.

Page 36

 Figure 17: The ISearchable interface

5 Implementation of Extensions

While exploring this concept two issues emerge:

First, only pages inheriting from ModuleAdminBasePage can directly submit content for indexing.
The web controls that can be loaded by PageEngine can not inherit from ModuleAdminBasePage
(since they're of type System.Web.UI.UserControl, not System.Web.UI.Page), so for these parts of a
module there is only the possibility to manually add the functionality that is provided by
ModuleAdminBasePage.

Second, the indexing is realized through a set of dependent components working quite differently
than other module extensions (e.g. Syndication, Persistence, etc.). There is a base page needed that
has dependencies on the IndexBuilder and the ModuleLoader and events have to be fired explicitly
to let the base page know that there is content to be indexed.

A better solution would be a generally available indexing/search service that can be configured to
automatically index the contents of a module.

5.2.2 Infrastructure Code
Recalling the introduction to Cuyahoga, modules are regarded as “little applications”. While the
integration into the CMS works very well concerning the user interface and deployment, core
infrastructure services (like persistence, versioning, indexing etc.) have to be implemented manually
for each module.

Page 37

 Figure 18: Making a module searchable

5 Implementation of Extensions

Persistence stands out a from this list because it is supported
very well by the usage of NHibernate and the availability of a
data access object (CommonDao) that can handle basic
CRUD operations for different entity types.

Nevertheless, the combination of different infrastructure
services is not facilitated through a common pattern, so if
multiple operations have to be carried out, e.g. persisting an
entity and submitting it for full-text indexing, this has to be
specified explicitly every time.

Ideally, there would be no need to explicitly call the
respective components, so the module developer can avoid
writing repetitive code and doesn't have the responsibility to
check if he hasn't forgotten to fire the OnContentCreated
event, for example.

Code Listing 22 shows the calls needed for saving and indexing an Article.
public virtual void SaveArticle(Article article)
{

article.Category = HandleCategory(article.Category);

if (article.Id == -1)
{
this._commonDao.SaveOrUpdateObject(article);
OnContentCreated(new IndexEventArgs(ArticleToSearchContent(article)));
}
else
{
this._commonDao.SaveOrUpdateObject(article);
OnContentUpdated(new IndexEventArgs(ArticleToSearchContent(article)));
}

}

5.3 Defining Objectives

To be able to provide a solution for the issues mentioned, that is acceptable for an open source
project being in productive use, following objectives have to be met alongside the implementation
of the extensions:

● Cuyahoga has an active user base using the current version, so no breaking changes are
possible

● New services must be able to exist side by side with the old infrastructure

● The existing components and the Microkernel should be leveraged whenever reasonable

● All new services have to provide a contract they adhere to

● The services should be capable of handling content from different types of modules

● The abstraction layer for content must be usable by different types of modules

Page 38

 Figure 19: The ICommonDao interface

 Code Listing 22.: The ArticleModule's SaveArticle method

5 Implementation of Extensions

5.4 Concrete Improvements

The following sections document the concrete changes and extensions that the author introduced to
Cuyahoga. While working on the core objectives some by-products were created that are shortly
discussed at the end of this chapter.

5.4.1 A New Foundation: The Content Abstraction Layer
To be able to leverage the infrastructure code and to provide common operations for all managed
content, an abstraction layer is needed for all CMS content.

As usual in OOP, abstraction can be reached through inheritance, so the author decided to create a
new base class for all managed content, the ContentItem class.

There are properties that all content shall provide, in order to provide a rich set of out-of-the-box
functionality.

While the pros and cons of such a base class should be discussed later, the contract defined through
the IContentItem interface is explained below:

1. Category instances that are assigned to this ContentItem
2. Read/Write permissions

3. The creation date

4. The original author

5. A globally unique identifier (GUID)

6. The entity id (also database primary key)

7. A locale definition (e.g. “en-US”) for specifying
localized contents

8. The date of last modification

9. The last author who modified the content

10. The publication date (for date driven publishing)

11. The author specifying the publication

12. The publication end date

13. The section this content is (primarily) bound to

14. A summary text, which will be mainly used for auto-
generated listings/search results

15. The title (mainly for auto-generated listings/search
results)

16. A format definition for automatically creating links to
this content (e.g.”/articles/view/{0}”), at the placeholder
“{0}”, the actual Id will be inserted (available only after
initial insert)

17. A version number, counting the revisions (and usable by the versioning infrastructure)

Page 39

 Figure 20: The ContentItem class

5 Implementation of Extensions

18. An enumeration defining certain workflow states (Draft, Review, Approved, Archived,
Locked)

This ContentItem class is especially meant to provide a contract for structured content, e.g product
data, news articles, forum posts, etc. However, there is other content, unstructured content, that
should also benefit from this.

So the first non-abstract class inheriting from ContentItem is defined:
FileResource
This class provides common information about files that should be
managed through Cuyahoga.

1. Simple count of downloads of this FileResource
2. List of Roles that are allowed to download a file

3. The file's extension (e.g. “.doc”, “.pdf” etc.)

4. The length in bytes

5. The file's mimetype (e.g. “image/jpeg”)

6. The file's name (without extension)

7. The physical path to this file (e.g. “C:\Docs\mydoc.pdf”)

8. A list of custom attributes (key value pairs) to store any
additional needed information with the file (e.g. for pictures
their resolution or movies their encoding etc.)

After having defined contracts for ContentItems and FileResources, there
need to be the infrastructure components/services that a developer can
make use of without having to further bother with the details of their implementation.

The first aspect that comes to mind is the persistence of this content. Again, NHibernate provides a
very feature-rich and solid base for these services.

The ContentItem class is mapped as any other persistent class using a NHibernate mapping file and
is therefore not listed.

The FileResource class mapping file starts with the element "joined-subclass" which signals
NHibernate that this class is part of a class hierarchy. Each class mapping for classes inheriting
from ContentItem will have to start with this element.

The derived classes will have a database table of its own for the additional properties they
introduce. The inherited properties, however will be inserted into the database table that is mapped
to ContentItem.

Page 40

 Figure 21: The FileResource
class

5 Implementation of Extensions

<?xml version="1.0" encoding="utf-8" ?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2">

<joined-subclass name="Cuyahoga.Core.Domain.FileResource, Cuyahoga.Core"
extends="Cuyahoga.Core.Domain.ContentItem, Cuyahoga.Core" table="cuyahoga_fileresource">

<key column="fileresourceid" />

<property name="Name" column="filename" type="String" length="255"
not-null="false" />

<property name="Extension" column="extension" type="String" length="10"
not-null="false" />

<property name="PhysicalPath" column="physicalpath" type="String" length="255"
not-null="true" />

<property name="Length" column="length" type="Int64" not-null="false" />

<property name="MimeType" column="mimetype" type="String" length="255"
not-null="false" />
<property name="DownloadCount" column="downloadcount" type="Int32"
not-null="false" />

<bag name="DownloadRoles" cascade="none" lazy="true"
table="cuyahoga_fileresourcerole">
<cache usage="read-write" />
<key column="fileresourceid" />
<many-to-many class="Cuyahoga.Core.Domain.Role, Cuyahoga.Core"

column="roleid" />
</bag>

<map name="UserAttributes" cascade="all" lazy="true"
table="cuyahoga_fileresourceuserattributes" order-by="attributekey asc">

<cache usage="read-write" />
<key column="fileresourceid"/>
<index column="attributekey" type="String" length="50"/>
<element column="attributevalue" type="String" length="255"/>

</map>

</joined-subclass>

</hibernate-mapping>

Since NHibernate supports this Polymorphism in every aspect, it is possible to query for the
subclass type only, or for all objects of type ContentItem. This greatly simplifies the code that has to
handle the content in a generic way because it can dynamically be decided what specialization of
ContentItem to handle.

As previously stated, the requirement to inherit from a base class to be able to take part in certain
processes might look like a tough one.

However, since this base class only contains properties that are part of the business domain of a
Content Management System, it is just a logical step into the direction of (re)unifying common
domain aspects.

Besides that, the ContentItem class is optional and does not have to be used, if the module
developer decides to rather implement a different solution.

Now, assuming that other modules let their content inherit from ContentItem, it allows for the

Page 41

 Code Listing 23.: Mapping the FileResource class

5 Implementation of Extensions

infrastructure services to operate on the modules content without having to have detailed knowledge
about the individual types, as illustrated in Figure 22.

Having the content abstraction layer in place does allow for providing common functionality but the
module still needs to obtain an instance of the service and submit the content. The next section
discusses how the services can be provided to the module.

5.4.2 Providing Infrastructure Services for Content
There are several basic services that come to mind when looking at content management. Most of
the system's modules will support one or more of the following services for managing its content:

Security checks, caching, validation, classification, versioning, indexing for search, persistence,
import/export, logging and many more.

The ContentItem class provides the most necessary properties for being processed by a CMS. The
infrastructure services that have to deal with the ContentItem objects may require additional
information.

5.4.2.1 Adding Specialized Data and Behaviour to Content

To keep the base class lean and avoid adding properties and methods that are too specific to a given
service, the ContentItem class should use interfaces that offer this extra bit of data or behavior. So
far, the author has defined the following interfaces:

Page 42

 Figure 22: Different services making use of the content abstraction layer

5 Implementation of Extensions

namespace Cuyahoga.Core.Service.Search
{
 public interface ISearchableContent
 {
 string ToSearchContent();
 IList<CustomSearchField> GetCustomSearchFields();
 }
}

The ISearchableContent interface demands to methods.

● ToSearchContent, which should return a string that will be added to the full-text index

● GetCustomSearchFields, which can be used to declare fields that should be indexed
separately from the full-text index, so they can be queried by their field name. An object
representing a book in a shop module for example could define a CustomSearchField
“ISBN”, so it can not only be retrieved using the full-text index but also by querying for its
ISBN number.

namespace Cuyahoga.Core.Service.Versioning
{
 public interface IVersionableContent
 {
 VersioningInfo GetVersioningInfo();
 }
}

The IVersionableContent interface only has one method, GetVersioningInfo. The returned object is
used to describe the properties that should be included in the comparison of two versions of a
ContentItem. The details of using this interface are demonstrated in the definition of the
VersioningService.
namespace Cuyahoga.Core.Service.Validation
{
 public interface IValidateableContent
 {
 bool IsValid(ref string validationMessage);
 }
}

The IValidateableContent interface can be used to determine if the ContentItem is in a valid state.
This is mainly intended for validating content before insert or update operations. The validation
Message argument can be altered to provide more specific and helpful information for what a user
can do if the validation fails (e.g. “The credit card checksum is not correct”)
namespace Cuyahoga.Core.Service.Logging
{
 interface ILoggableContent
 {
 string GetLogSignature();
 }
}

Page 43

 Code Listing 24: Definition of the ISearchableContent interface

 Code Listing 25: Definition of the IVersionableContent interface

 Code Listing 26: Definition of the IValidateableContent interface

 Code Listing 27: Definition of the ILoggableContent interface

5 Implementation of Extensions

Finally, the ILoggableContent interface would be used at any time when log information about a
specific ContentItem is written to the log file. Using the shop module example again, the logger
would not only write something generic like “Deleted ContentItem with Id 23453” but a more
detailed information like “Deleted Book with ISBN: 3-86640-001-2, category: Science-Fiction”

5.4.2.2 Implementing the Search Service

As described, until version 1.5 of Cuyahoga, for indexing content the usage of several base classes
and different components was necessary.

The rewritten search infrastructure will operate on ContentItem classes that implement the
ISearchableContent interface and is made available through the Microkernel.

The interface defines the methods the SearchService needs to offer. Internally, the SearchService
still uses the (extended) IndexBuilder and IndexQuery classes that were present before but hides
them behind this simple contract.

The overloads are needed to provide compatibility with the previous implementation. To show what
exactly changed, the StaticHtmlModule will be taken as an example.
private SearchContent StaticHtmlContentToSearchContent(StaticHtmlContent shc)

{
SearchContent sc = new SearchContent();
sc.Title = shc.Section.Title;
sc.Summary = Text.TruncateText(shc.Content, 200);
sc.Contents = shc.Content;
sc.Author = shc.ModifiedBy.FullName;
sc.ModuleType = shc.Section.ModuleType.Name;
sc.Path = this.SectionUrl;
sc.Category = String.Empty;
sc.Site = shc.Section.Node.Site.Name;
sc.DateCreated = shc.UpdateTimestamp;
sc.DateModified = shc.UpdateTimestamp;
sc.SectionId = shc.Section.Id;
return sc;
}

For the StaticHtmlModule to be able to submit its content for the index, it first has to convert the
StaticHtml object it manages to a helper object “SearchContent” because until now the
IndexBuilder only accepted objects of type SearchContent for indexing.

Page 44

 Figure 23: The ISearchService interface

 Code Listing 28.: Converting a StaticHtml object to an instance of SearchContent

5 Implementation of Extensions

After having converted the module specific content, the module's edit page needs to register the
events that inform the ModuleAdminBasePage.

#region ISearchable Members

public SearchContent[] GetAllSearchableContent()
{

StaticHtmlContent shc = GetContent();
if (shc != null)
{

SearchContent[] searchContents = new SearchContent[1];
searchContents[0] = StaticHtmlContentToSearchContent(shc);
return searchContents;

}
else
{

return new SearchContent[0];
}

}
public event Cuyahoga.Core.Search.IndexEventHandler ContentCreated;

protected void OnContentCreated(IndexEventArgs e)
{

if (ContentCreated != null) ContentCreated(this, e);
}
public event Cuyahoga.Core.Search.IndexEventHandler ContentDeleted;

protected void OnContentDeleted(IndexEventArgs e)
{

if (ContentDeleted != null) ContentDeleted(this, e);
}
public event Cuyahoga.Core.Search.IndexEventHandler ContentUpdated;

protected void OnContentUpdated(IndexEventArgs e)
{

if (ContentUpdated != null) ContentUpdated(this, e)
}
#endregion}

Using the new SearchService this is greatly simplified.
public StaticHtmlModule(ISearchService searchService)
{

this.searchService = searchService;
}

public void SaveContent(StaticHtmlContent content)
{

[... saving to database]
this.searchService.AddContent(StaticHtmlContent content);

}

Now, since the SearchService is registered with the Microkernel, the module only needs to define a
constructor argument that matches ISearchService to obtain an instance and can call it at any time,
anywhere in the module providing a StaticHtmlContent object that is inheriting from ContentItem
and implements the ISearchableContent interface.

Page 45

 Code Listing 29: The StaticHtmlModule implementing ISearchable

 Code Listing 30: Indexing content with the new SearchService

5 Implementation of Extensions

The rewritten IndexBuilder knows how to index the content, obsoleting the need of a helper object
like SearchContent.
Code Listing 31 shows the shortened implementation of the new BuildDocumentFromContentItem
method.

First, the method checks if the supplied ContentItem really implements ISearchableContent and
otherwise throws an error.

Then, the simple properties (Title, CreatedBy etc.) are added to the Lucene Document as Fields.

Finally, the method loops through the collections of Category, ContentItemPermission and
CustomSearchField objects and adds this information to the Lucene Document, as well.

private Document BuildDocumentFromContentItem(IContentItem contentItem)
{
 ISearchableContent searchInfo = contentItem as ISearchableContent;
 if (searchInfo == null) throw new
 ArgumentException("Argument must implement ISearchableContent");

 string plaintext = searchInfo.ToSearchContent();
 string path = string.Format(contentItem.UrlFormat, contentItem.Id);

 Document doc = new Document();
 doc.Add(new Field("title", contentItem.Title, Field.Store.YES,
 Field.Index.TOKENIZED));
 doc.Add(new Field("summary", contentItem.Summary, Field.Store.YES,
 Field.Index.TOKENIZED));
 doc.Add(new Field("contents", plaintext, Field.Store.NO, Field.Index.TOKENIZED));
 doc.Add(new Field("author", contentItem.CreatedBy.FullName, Field.Store.YES,

 [...]

 foreach (Category cat in contentItem.Categories)
 {
 doc.Add(new Field("category", cat.Name, Field.Store.YES, Field.Index.UN_TOKENIZED));
 }
 foreach (ContentItemPermission permission in contentItem.ContentItemPermissions)
 {
 if (permission.ViewAllowed)
 {
 doc.Add(new Field("viewroleid", permission.Role.Id.ToString(), Field.Store.YES,
 Field.Index.UN_TOKENIZED));
 }
 }
 foreach (CustomSearchField field in searchInfo.GetCustomSearchFields())
 {
 Field.Store store = field.IsStored ? Field.Store.YES : Field.Store.NO;
 Field.Index index =
 field.IsTokenized ? Field.Index.TOKENIZED :Field.Index.UN_TOKENIZED;
 if (field.FieldKey != null && field.FieldValue != null)
 {
 doc.Add(new Field(field.FieldKey, field.FieldValue, store, index));
 }
 }
 return doc;
}

Page 46

 Code Listing 31.: The rewritten IndexBuilder converts ContentItems to Lucene Documents

5 Implementation of Extensions

5.4.2.3 Implementing the Versioning Service

A very important feature of any CMS is the ability to keep different versions of content. Until now,
Cuyahoga does not support versioned content, nor do any of the modules available.

The versioning functionality should be implemented as simple (and robust) as possible but by doing
so, it should not affect the domain model (e.g. by requiring special meta attributes etc.) and it
should keep the usage of resources low (by not simply copying the whole entities for every version
increment).

Furthermore, since the type of object will not be known in advance, the versioning service should
be prepared to handle arbitrary, complex objects.

While the concrete algorithm is not of primary interest in the context of this thesis, at least the
concept should be explained.

Upon initial saving of an entity, all versionable properties will be saved in the VersionedProperty
collection of VersionedItem, resulting in a complete copy. The next time the entity is edited and
updated, its properties will be matched against the previous version and a new entry for
VersionedItem will be inserted in the database. If no change is detected, only the references from
the old VersionedProperty entries to the new VersionedItem will be updated. If there happened a
modification, the new entry for VersionedProperty will be created and associated with the new
VersionedItem.

VersionedItem (before change):

Id Type Version
001 Article 1.0

VersionedProperty (before change):

FK VersionedItem Type PropertyKey PropertyValue
001 string Title New products are out

001 string Summary We are pleased to anounce that...

VersionedItem (after change of property “Title”):

Id Type Version
001 Article 1.0
002 Article 2.0

Page 47

5 Implementation of Extensions

VersionedProperty (after change of property “Title”):

FK VersionedItem Type PropertyKey PropertyValue
001 string Title New products are out

001, 002 string Summary We are pleased to anounce that...

002 string Title Very new products are out

Using this approach, only the changed value for Title is added to the database, the Summary has not
changed, so only a reference is added from the old Summary to the new VersionedItem entry.

Figure 24 shows all components and entities involved.

As previously explained, ContentItems that should be versioned have to implement the
IVersionableContent interface.

Page 48

 Figure 24: Interaction between the VersioningService and ContentItems

 Figure 25: The IVersionableContent interface

5 Implementation of Extensions

GetVersioningInfo is supposed to return a VersioningInfo object that defines the properties (and
child objects) that are included for the versioning process.

The VersioningInfo class is used to describe how and which complex child objects of the submitted
ContentItem are to be handled by the VersioningService.

1. The property to be used as the identifier (only the ContentItem class itself is required to have
an Id property, child objects are not.

2. Defines if the child object is contained within a list

3. The child object itself can have childs, too

4. The Type of the child object

By using this information, the VersioningService can recursively convert all versionable properties
to their string representation and save the changes as shown above.

5.4.3 Chaining the Infrastructure Services
In a Content Management System most of the modules will support one or more of the following
infrastructure services regarding managing its items: Security, Caching, Validation, Versioning,
Index/Search, Persistence, Import/Export, Logging, Internationalization etc.

The problem is that every service object has to be instantiated and the content(s) that the operations
are to executed upon need to be individually submitted to the respective service.

Looking at a concrete ContentItem that is being edited, multiple operations will be performed, if the
content item has to be changed.

Figure 27 shows a series of such calls that are likely to happen, if one or more of the ContentItem
properties are changed.

Page 49

 Figure 26: The VersioningInfo class

5 Implementation of Extensions

First, it has to be checked if the changes are valid.

Next, the content item will probably get re-indexed and the changes will be recorded to some
version store.

Then, some info about the operations might be logged.

Last, the changed content item itself has to be saved/updated in the database.

Not all modules will always use the same set of services and some modules will probably want to
implement a specialized version of a given service.

Using the new extensions to Cuyahoga, there are several ways this could be realized.

The simplest solution would be to put all needed service contracts to the module's constructor
(Constructor Injection) and use them as needed but this again involves a lot of repetitive code.

Another solution would be to make the services “chainable”. A common way of chaining objects is
to let all chainable objects implement the same interface and add a constructor parameter whose
type matches this interface.

The service would then override the interface methods or properties it is interested in (e.g. the
indexing component will probably not be interested in read-only operations) and finally forward the
call to the “inner service” (if one has been supplied with the constructor argument)

Page 50

 Figure 27: Chaining the
infrastructure services

5 Implementation of Extensions

This approach is a well known pattern called Decorator Pattern [Buschmann et al. 2001]. A
concrete implementation for the CMS scenario is shown in Figure 28.

There is an interface IContentItemDao that defines several very common operations (Get, Save,
Find etc.) that can be overridden by the decorators. The decorators then can perform any operations
needed and forward processing to the next decorator.

To make sure that all decorators behave the same way, an abstract class is used which the
decorators have to inherit from. Code Listing 32 shows a (shortened) possible implementation.

One interesting detail is the usage for Generics. Generics are similar to C++ templates and allow for
defining type placeholders that will be evaluated during runtime. Additionally the generic type (T)
is constrained to only accept IContentItem.

Page 51

 Figure 28: Implementing the Decorator Pattern

5 Implementation of Extensions

public abstract class AbstractDaoDecorator<T> : IContentItemDao<T> where T :
IContentItem
{
 protected IContentItemDao<T> contentItemDao;

 //constructor injection
 public AbstractDaoDecorator(IContentItemDao<T> contentItemDao)
 {
 this.contentItemDao = contentItemDao;
 }

 #region IContentItemDao<T> Members

 public virtual T GetById(long id)
 {
 //forward call to inner dao
 return this.contentItemDao.GetById(id);
 }

 public virtual System.Collections.Generic.IList<T> GetAll()
 {
 //forward call to inner dao
 return this.contentItemDao.GetAll();
 }

 public virtual T Save(T entity)
 {
 //forward call to inner dao
 return this.contentItemDao.Save(entity);
 }

 public virtual void Delete(T entity)
 {
 //forward call to inner dao
 this.contentItemDao.Delete(entity);
 }

 #endregion
}

So now, it is possible to chain several services, as Code Listing 33 shows.
public void SaveArticle(Article article)
{

IContentItemDao<Article> contentItemDao = new VersioningDecorator<Article>(
new ValidationDecorator<Article>(

new IndexingDecorator<Article>(
new ContentItemDao<Article>(

))));

contentItemDao.Save(article);
}

The only remaining issue is that both solutions (using Constructor Injection versus the Decorator
Pattern) are not perfect.

Using Constructor Injection, there is no need to directly obtain a reference to the desired services
but the services have to be called individually for every operation.

Page 52

 Code Listing 32: Implementation of the AbstractDaoDecorator class

 Code Listing 33: Manually creating a Decorator Chain

5 Implementation of Extensions

Using the Decorator Pattern, the services are chained automatically. But the references can't be
obtained so easily because the decorators are not available through the Microkernel and if they
would, how would the Microkernel know which decorators should execute?

The final solution is a combination of these two approaches, exploiting the possibility to inspect the
ContentItem for special interfaces (e.g. ISearchableContent) and configuring a “standard chain” in
the Microkernel's component configuration.

Combining the Constructor Injection and the Decorator pattern is realized through registering the
IContentItemDao interface as a service contract with the Microkernel.

Since all decorators have to implement this interface, they are obtainable via Dependency Injection.
The Castle Microkernel has the ability to recognize service overrides, so mulitple variants of the
IContentItemDao can be registered (one for the VersioningDecorator, one for the
ValidationDecorator, etc.)

The order in which the decorators are called is only important for the actual ContentItemDao, which
provides the database access and should therefore be called last.

Code Listing 34 shows an excerpt of the Microkernel's configuration file, where the “standard
chain” is defined.

The parameter entries enclosed in “${...}” are named references to the specialized implementations
of IContentItemDao. These are used for determining which actual service to supply as constructor
argument.
 <!-- Decorator chain-->
 <component
 id="core.searchdecorator"
 service="Cuyahoga.Core.DataAccess.IContentItemDao`1, Cuyahoga.Core"
 type="Cuyahoga.Core.Decorators.SearchDecorator`1, Cuyahoga.Core">
 <parameters>
 <contentItemDao>${core.versioningdecorator}</contentItemDao>
 </parameters>
 </component>
 <component
 id="core.versioningdecorator"
 service="Cuyahoga.Core.DataAccess.IContentItemDao`1, Cuyahoga.Core"
 type="Cuyahoga.Core.Decorators.VersioningDecorator`1, Cuyahoga.Core">
 <parameters>
 <contentItemDao>${core.contentitemdao}</contentItemDao>
 </parameters>
 </component>
 <component
 id="core.contentitemdao"
 service="Cuyahoga.Core.DataAccess.IContentItemDao`1, Cuyahoga.Core"
 type="Cuyahoga.Core.DataAccess.ContentItemDao`1, Cuyahoga.Core">
 </component>

Code Listing 35 shows a snippet from the SearchDecorator class. The constructor arguments are
injected through the Microkernel. The Save method evaluates if indexing should happen at all and
then inspects the supplied entity for the ISearchableContent interface. In case it is found, the
content will be indexed and the execution flow is handed over to the next (inner) IContentItemDao.

Page 53

 Code Listing 34.: Configuring the Decorator Chain with the Microkernel

5 Implementation of Extensions

class SearchDecorator<T> : AbstractDaoDecorator<T> where T : IContentItem
{
 private ISearchService searchService;

 public SearchDecorator(IContentItemDao<T> contentItemDao, ISearchService
searchService)
 : base(contentItemDao)
 {
 this.searchService = searchService;
 }

 private bool UseInstantIndexing
 {
 get
 {
 return (Boolean.Parse(Config.GetConfiguration()["InstantIndexing"]));
 }
 }

 public override T Save(T entity)
 {
 if (UseInstantIndexing)
 {
 if (entity is ISearchableContent)
 {
 this.searchService.AddContent(entity);
 }
 }
 //forward call to inner dao
 return this.contentItemDao.Save(entity);
 }

5.5 Gains and By-Products

Using the presented content abstraction layer and the chained services, module developers are freed
from providing a lot of infrastructure code and can utilize the services as needed.

The created services all share a common pattern and new services can easily be added in a
predefined manner and without interfering with the existing core.

Since content now shares a common foundation, the CMS users can connect and categorize it,
regardless of the type of module that manages it.

Some by-products that were implemented for making the new services available to the user have
not been documented in this thesis and therefore should be shortly mentioned here.

The module loading strategy has been changed from on-demand to predefined, because
performance issues arose during stress tests with dynamic loading. The CMS administrator can now
“activate” the module in the back-end area

Page 54

 Code Listing 35: Implementation of the SearchDecorator class

5 Implementation of Extensions

A completely new administration area was created. The “category manager” allows for creating and
editing content categories

Page 55

 Figure 29: The extended module manager

 Figure 30: The new category manager

5 Implementation of Extensions

A category module was implemented to be able to display the categories on the CMS pages. The
module implements the IActionProvider interface, so it can be connected with the search module
for limiting the search to only selected categories

The search module was improved to reflect the new SearchService capabilities. A category filter
was added and the search module now has to submit the User instance that issued the query, so the
SearchService can automatically filter the result set based on access privileges.

The libraries used by Cuyahoga (Castle, NHibernate, Lucene.NET, etc.) where updated to the latest
version and resulting conflicts were resolved.

Page 56

 Figure 31 Combining search module and category module

	5
 Implementation of Extensions
	5.1 General Issues:
	5.2 Concrete Examples
	5.2.1 The Search Functionality
	5.2.2 Infrastructure Code

	5.3 Defining Objectives
	5.4 Concrete Improvements
	5.4.1 A New Foundation: The Content Abstraction Layer
	5.4.2 Providing Infrastructure Services for Content
	5.4.2.1 Adding Specialized Data and Behaviour to Content
	5.4.2.2 Implementing the Search Service
	5.4.2.3 Implementing the Versioning Service

	5.4.3 Chaining the Infrastructure Services

	5.5 Gains and By-Products

